Tetrahedron Letters,Vol.30,No.48,pp 6729-6732,1989 0040-4039/ Printed in Great Britain Pergamon P

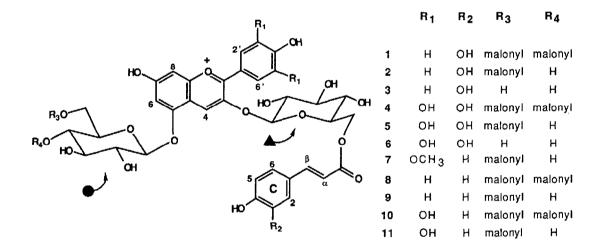
0040-4039/89 \$3.00 + .00 Pergamon Press plc

STRUCTURE OF ANTHOCYANINS IN SCARLET, PURPLE, AND BLUE FLOWERS OF SALVIA

Tadao Kondo,^{*+} Mitsuo Yoshikane, Kumi Yoshida[#] and Toshio Goto^{*}
⁺Chemical Instrument Center, Nagoya University; Laboratory of Organic Chemistry, Faculty of Agriculture, Nagoya University Chikusa, Nagoya 464, Japan
[#]School of Home Economics, Sugiyama Jogakuen University Hoshigaokamotomachi, Chikusa, Nagoya 464, Japan

Scarlet flowers of <u>Salvia splendens</u> contain salvianin (major), monardaein (minor) and their demalonyl derivatives, whereas salviadelphin and its demalonyl derivatives as well as dimalonylawobanin are present in purple flowers of <u>S. splendens</u>. In blue flowers of <u>Salvia farinacea</u> is found salviamalvin as well as malonylawobanin; mostly the latter being found in stems. Structures of these anthocyanins have been completely determined.

In 1917 Willstätter and Bolton¹⁾ isolated from <u>Salvia</u> <u>splendens</u> an anthocyanin, salvianin, which was reported to contain pelargonidin diglucoside with 25% malonic acid. Later Karrer and Widmer²⁾ isolated an anthocyanin, monardaein, from <u>Monarda dydima</u>, which was reported to be identical with salvianin. They suggested its structure to be pelargonidin diglucoside acylated with two molecules of malonic acid and a molecule of pcoumaric acid. Shibata et al.³⁾ obtained from purple variety of <u>S.</u> <u>splendens</u> several acylated anthocyanins that contain delphinidin, cyanidin and pelargonidin acylated with pcoumaric acid or malonic acid, whereas mostly caffeic acid derivatives were reported by Asen⁴⁾ in the same flower.


When we reported⁵⁾ a complete structure of monardaein (8) isolated from <u>M.</u> <u>didyma</u>, we also preliminary reported that fresh petals of scarlet <u>S.</u> <u>splendens</u> contain monardaein as a minor component; a major anthocyanin being different from monardaein and its demalonylated products. Recently Harborne et al.⁶⁾ reported that the pigments of scarlet <u>S.</u> <u>splendens</u> consist of pelargonidin 3-caffeylglucoside-5-dimalonylglucoside and monardaein, although structure of salvianin had been assigned by Birkofer et al.⁷⁾ to be pelargonidin-3-(6-caffeylglucoside)-5-glucoside without malonic acid.

Now we report here structures of new anthocyanins isolated from purple flowers of \underline{S} . splendens and blue flowers of \underline{S} . farinacea as well as the complete structure of salvianin

6729

obtained from scarlet flowers of S. splendens.

Fresh scarlet petals of <u>S. splendens</u> (5.7 kg) stored at -20 $^{\circ}$ C was pulverized in the presence of liq. N₂ and extracted with 0.5% aq trifluoroacetic acid (TFA) at room temp. The extract (22 L) was poured on an XAD-7 column to adsorb pigments. Stepwise elution with aqueous methanol (20, 30 and 80%) containing 0.1% TFA gave, after evaporation below 10 $^{\circ}$ C, a pigment mixture, which was further chromatographed on an ODS column by gradient elution with a mixture of water and solvent A (30 to 100%) containing 3% phosphoric acid [solv. A = CH₃COOH:CH₃CN:H₂O (4:5:11)]. The phosphate anions in the fractions containing pigments were replaced with trifluoroacetate anions by passing through an ODS column with 0.01% TFA-50% solv. A, and the fractions were evaporated under vacuum to give as their TFA salt salvianin (1) (79.9 mg), monodemalonylsalvianin (2) (40.3 mg), bisdemalonylsalvianin (3) (3.4 mg), monardaein (8) (21.4 mg), and monodemalonylmonardaein (9) (11.4 mg).

Salvianin (1), on treatment with 0.1M HCl at 80 $^{\circ}$ C, was transformed into 3 <u>via</u> 2. FABMS of 1, 2 and 3 gave molecular ions at m/z 929, 843, and 757, respectively. Presence of one and two molecules of malonic acid in 2 and 1, respectively, was shown by acid methanolysis to produce dimethyl malonate, which was quantitatively analyzed by gas chromatography.⁵⁾

The structure of bisdemalonylsalvianin (3) was determined to be 3-O-(6-O-E-caffeyl- β -D-glucopyranosyl)-5-O-(β -D-glucopyranosyl)pelargonidin as follows: in the ¹H NMR spectrum (500 MHz) all of the proton signals assigned by ¹H spin-spin decoupling and HOHAHA experiments showed the presence of pelargonidin, caffeic acid, and two molecules of glucose in β -pyranoside form (J_{1,2} = 7.5 Hz and J_{2,3} = J_{3,4} = J_{4,5} = 9 Hz). NOE (\blacktriangle -1

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Table 1. In Mark, FAD mass, and visible spectra of <u>Salvia</u> anthocyanins											
$\begin{split} \mathbf{NKR}^{\mathbf{R}} & \qquad \qquad$		\mathfrak{Q}	(2)	(3)	(4)	(5)	<u>(</u> ه)	\mathcal{D}	(10)			
4 8.98 8.99 8.99 8.96 8.88 8.88 8.81 8.98 8.78 s 6 7.00br 7.00 6.94 6.93 6.95br 7.01br 6.94 6.98 6.98 6.96br 7.02br 6.89 d 2.0 2',6' 8.57 8.60 8.58 7.785 7.75 7.736 7.978 7.688 d 9.0 3',5' 7.06 7.06 7.06 d 9.0 OME d 9.0 OME d 9.0 OME d 9.0 OME d 9.0 OME d 9.0 OME												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											nz)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8.98									0.0	
6) 7.1010 6.94 6.98 6.98 6.98 7.735 7.735 7.978 7.688 d 2.0 2'.6' 8.57 8.60 8.58 7.785 7.775 7.735 7.978 7.688 d 9.0 3'.5' 7.06 7.06 7.06 d 9.0 OMe 4.000 - s -1 5.25 5.20 5.18 5.23 5.18 5.22 5.21 5.14 d 7.5 -2 3.90 3.77 3.78 3.87 3.81 3.80 3.73 3.78 dd 9.0 7.5 -3 3.83 3.57 3.58 3.80 3.64 3.59 3.58 3.70 t 9.0 -4 5.02 3.47 3.44 4.49 3.52 3.43 3.47 4.89 t 9.0 -5 4.06 3.80 3.63 4.05 3.95 3.66 3.81 3.95 ddd 9.0 6.0 2.0 -6a 4.43 4.57 4.03 4.42 4.54 4.07 4.55 4.28 dd 12.0 2.0 -6a 4.43 4.57 4.03 4.42 4.54 4.07 4.55 4.28 dd 12.0 2.0 -6a 4.43 5.72 3.71 3.80 3.77 3.81 3.78 3.70 d 9.0 7.5 -3 3.63 3.59 5.42 5.45 5.48 5.47 5.33 d 7.5 -2 3.75 3.72 3.71 3.80 3.77 3.81 3.78 3.70 d 9.0 7.5 -3 3.63 3.59 3.59 3.61 3.58 3.63 3.62 3.52 t 9.0 -4 3.54 3.50 3.50 3.51 3.47 3.51 3.49 3.40 t 9.0 -5 3.92 3.91 3.91 3.93 3.82 3.97 3.95 3.85 ddd 9.0 6.0 2.5 -6a 4.43 4.53 4.48 4.55 4.58 4.47 -6b 4.44 4.43 4.51 4.43 4.26 4.54 -6b 4.44 4.43 4.51 4.43 4.26 4.54 -6b 4.44 4.43 4.51 4.43 4.26 4.54 -7.17 4.60 4.44 4.43 4.51 4.43 4.26 4.54 -7.17 4.60 4.44 4.43 4.51 4.43 4.26 4.54 -7.17 4.60 4.20 6.0 C-a 6.17 6.19 6.19 6.20 6.21 6.23 6.23 6.16 d 16.0 C-b 7.30 7.32 7.28 7.31 7.32 7.26 7.37 7.29 d 16.0 C-a 6.73 6.26 6.718 6.75 6.78 6.698 -7.24 b 7.14 ^b d 2.0 C-5 6.70 6.21 6.718 6.75 6.78 6.698 -7.24 b 7.14 ^b d 2.0 C-5 6.70 6.21 6.718 6.70 6.71 6.698 -7.24 b 7.14 ^b d 2.0 C-5 6.70 6.21 6.718 6.75 7.89 887 945 V1a ⁶ 509 509 541 5541 5542 539 	8 }							r}7.02br				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
OMe 4.00 - s -1 5.25 5.20 5.18 5.23 5.18 5.22 5.21 5.14 d 7.5 -2 3.90 3.77 3.78 3.87 3.81 3.80 3.73 3.78 dd 9.0 7.5 -3 3.83 3.57 3.58 3.80 3.64 3.59 3.58 3.70 t 9.0 -4 5.02 3.47 3.44 4.49 3.52 3.43 3.47 4.89 t 9.0 -5 4.06 3.80 3.63 4.05 3.95 3.66 3.81 3.95 ddd 9.0 6.0 2.0 -6a 4.43 4.57 4.03 4.42 4.54 4.07 4.55 4.28 dd 12.0 2.0 -6b 4.24 4.26 3.75 4.21 4.44 3.76 4.24 4.08 dd 12.0 6.0 -1 5.44 5.38 5.39 5.42 5.45 5.48 5.47 5.33 d 7.5 -2 3.75 3.72 3.71 3.80 3.77 3.81 3.78 3.70 dd 9.0 7.5 -3 3.63 3.59 3.59 3.61 3.58 3.63 3.62 3.52 t 9.0 -4 3.54 3.50 3.50 3.51 3.47 3.51 3.49 3.40 t 9.0 -5 3.92 3.91 3.91 3.93 3.82 3.97 3.95 3.85 ddd 9.0 6.0 2.5 -6a 4.43 4.43 4.51 4.43 4.26 4.54 -6b 4.44 4.43 4.51 4.43 4.26 4.54 -7 4.45 dd 12.0 2.5 -6a 6.77 6.21 6.19 6.19 6.20 6.21 6.23 6.23 6.16 d 16.0 C-2 6.82 6.84 6.94 6.82 6.84 6.84 C-6 6.73 6.26 6.71 6.75 6.78 6.69s -7.14 ^b dd 8.0 2.0 C-3							/./3s		/.68s			
	-						-		-		9.0	
	_											
	●-1	5.25	5.20	5.18	5.23	5.18	5.22	5.21	5.14	d	7.5	
	●-2	3.90	3.77	3.78	3.87	3.81	3.80	3.73	3.78	dd	9.0 7.5	
	●-3	3.83	3.57	3.58	3.80	3.64	3.59	3.58	3.70	t	9.0	
●-6a 4.43 4.57 4.03 4.42 4.54 4.07 4.55 4.28 dd 12.0 2.0 ●-6b 4.24 4.26 3.75 4.21 4.44 3.76 4.24 4.08 dd 12.0 6.0 ▲-1 5.44 5.38 5.39 5.42 5.45 5.48 5.47 5.33 d 7.5 ▲-2 3.75 3.72 3.71 3.80 3.77 3.81 3.78 3.70 dd 9.0 7.5 ▲-3 3.63 3.59 3.59 3.61 3.58 3.63 3.62 3.52 t 9.0 ▲-4 3.54 3.50 3.50 3.51 3.47 3.51 3.49 3.40 t 9.0 ▲-5 3.92 3.91 3.91 3.93 3.82 3.97 3.95 3.85 ddd 9.0 6.0 2.5 ▲-6a 4.58 4.53 4.48 4.55 4.58 4.47 -6a 4.58 4.53 4.48 4.55 4.58 4.47 -6b 4.44 4.43 4.51 4.43 4.26 4.54 -448m 4.34 dd 12.0 6.0 C-a 6.17 6.19 6.19 6.20 6.21 6.23 6.23 6.16 d 16.0 C-a 6.17 6.19 6.19 6.20 6.21 6.23 6.23 6.16 d 16.0 C-a 6.73 6.26 6.71s 6.75 6.78 6.69s 7.24^{b} 7.24^{b} 7.14^{b} 7.14^{b} 7.14^{b} 4.0 7.14^{b} $7.14^$	●-4	5.02	3.47	3.44	4.49	3.52	3.43	3.47	4.89	t	9.0	
●-6b 4.24 4.26 3.75 4.21 4.44 3.76 4.24 4.08 dd 12.0 6.0 ▲-1 5.44 5.38 5.39 5.42 5.45 5.48 5.47 5.33 d 7.5 ▲-2 3.75 3.72 3.71 3.80 3.77 3.81 3.78 3.70 dd 9.0 7.5 ▲-3 3.63 3.59 3.59 3.61 3.58 3.63 3.62 3.52 t 9.0 ▲-4 3.54 3.50 3.50 3.51 3.47 3.51 3.49 3.40 t 9.0 ▲-5 3.92 3.91 3.91 3.93 3.82 3.97 3.95 3.85 ddd 9.0 6.0 2.5 ▲-6a 4.58 4.53 4.48 4.55 4.58 4.47 4.45 dd 12.0 2.5 4-6b 4.44 4.43 4.51 4.43 4.26 4.54 4.48m 4.34 dd 12.0 6.0 C-a 6.17 6.19 6.19 6.20 6.21 6.23 6.23 6.16 d 16.0 C-a 6.17 6.19 6.19 6.20 6.21 6.23 6.23 6.16 d 16.0 C-a 6.73 6.26 6.718 6.75 6.78 6.69s $\textbf{7.24^{b}}$ $\textbf{7.14^{b}}$ d 2.0 C-3	●~5	4.06	3.80	3.63	4.05	3.95	3.66	3.81	3.95	ddd	9.0 6.0 2.0	
	●- 6a	4.43	4.57	4.03	4.42	4.54	4.07	4.55	4.28	dd	12.0 2.0	
▲-2 3.75 3.72 3.71 3.80 3.77 3.81 3.78 3.70 dd 9.0 7.5 ▲-3 3.63 3.59 3.59 3.61 3.58 3.63 3.62 3.52 t 9.0 ▲-4 3.54 3.50 3.50 3.51 3.47 3.51 3.49 3.40 t 9.0 ▲-5 3.92 3.91 3.91 3.93 3.82 3.97 3.95 3.85 ddd 9.0 6.0 2.5 ▲-6a 4.58 4.53 4.48 4.55 4.58 4.47 ▲-6b 4.44 4.43 4.51 4.43 4.26 4.54 4.48m 4.45 dd 12.0 2.5 4.45 dd 12.0 2.5 4.45 dd 12.0 6.0 C-a 6.17 6.19 6.19 6.20 6.21 6.23 6.23 6.16 d 16.0 C-b 7.30 7.32 7.28 7.31 7.32 7.26 7.37 7.29 d 16.0 C-2 6.82 6.84 6.94 6.82 6.84 6.84 C-6 6.73 6.26 6.71s 6.75 6.78 6.69s 7.24^{b} 7.14^{b} dd 8.0 2.0 C-3	●~ 6b	4.24	4.26	3.75	4.21	4.44	3.76	4.24	4.08	dd	12.0 6.0	
▲-3 3.63 3.59 3.59 3.61 3.58 3.63 3.62 3.52 t 9.0 ▲-4 3.54 3.50 3.50 3.51 3.47 3.51 3.49 3.40 t 9.0 ▲-5 3.92 3.91 3.91 3.93 3.82 3.97 3.95 3.85 ddd 9.0 6.0 2.5 ▲-6a 4.58 4.53 4.48 4.55 4.58 4.47 ▲-6b 4.44 4.43 4.51 4.43 4.26 4.54 $\left\{4.48m 4.34 dd 12.0 6.0\right\}$ C-a 6.17 6.19 6.19 6.20 6.21 6.23 6.23 6.16 d 16.0 C-b 7.30 7.32 7.28 7.31 7.32 7.26 7.37 7.29 d 16.0 C-2 6.82 6.84 6.94 6.82 6.84 6.84 C-6 6.73 6.26 6.71s 6.75 6.78 6.69s $\left\{7.24^{b}\right\}$ $\left\{7.14^{b}\right\}$ d 2.0 C-3	▲-1	5.44	5.38	5.39	5.42	5.45	5.48	5.47	5.33	d	7.5	
▲-4 3.54 3.50 3.50 3.51 3.47 3.51 3.49 3.40 t 9.0 ▲-5 3.92 3.91 3.91 3.93 3.82 3.97 3.95 3.85 ddd 9.0 6.0 2.5 ▲-6a 4.58 4.53 4.48 4.55 4.58 4.47 ▲-6b 4.44 4.43 4.51 4.43 4.26 4.54 4.48m 4.34 dd 12.0 6.0 C-a 6.17 6.19 6.19 6.20 6.21 6.23 6.23 6.16 d 16.0 C-b 7.30 7.32 7.28 7.31 7.32 7.26 7.37 7.29 d 16.0 C-2 6.82 6.84 6.94 6.82 6.84 6.84 C-4 6.73 6.26 6.71s 6.75 6.78 6.69s 7.24^{b} 7.14^{b} d 2.0 C-5 6.70 6.21 6.71s 6.70 6.71 6.69s 6.73^{b} 6.63^{b} d 8.0 NOE ^C + + + + + + + + + + + + + + + + + + +	▲-2	3.75	3.72	3.71	3.80	3.77	3.81	3.78	3.70	dd '	9.0 7.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	▲3	3.63	3.59	3.59	3.61	3.58	3.63	3.62	3.52	t	9.0	
▲-6a 4.58 4.53 4.48 4.55 4.58 4.47 ▲-6b 4.44 4.43 4.51 4.43 4.26 4.54 4.48m 4.34 dd 12.0 2.5 4.48m 4.34 dd 12.0 6.0 C-a 6.17 6.19 6.19 6.20 6.21 6.23 6.23 6.16 d 16.0 C-b 7.30 7.32 7.28 7.31 7.32 7.26 7.37 7.29 d 16.0 C-2 6.82 6.84 6.94 6.82 6.84 6.84 C-6 6.73 6.26 6.71s 6.75 6.78 6.69s 7.24^{b} 7.14^{b} dd 8.0 2.0 C-3	▲- 4	3.54	3.50	3.50	3.51	3,47	3,51	3.49	3.40	t	9.0	
▲-6b 4.44 4.43 4.51 4.43 4.26 4.54 $\begin{cases} 4.48 \text{m} & 4.34 & \text{dd} & 12.0 & 6.0 \\ \text{C-a} & 6.17 & 6.19 & 6.19 & 6.20 & 6.21 & 6.23 & 6.23 & 6.16 & \text{d} & 16.0 \\ \text{C-b} & 7.30 & 7.32 & 7.28 & 7.31 & 7.32 & 7.26 & 7.37 & 7.29 & \text{d} & 16.0 \\ \text{C-2} & 6.82 & 6.84 & 6.94 & 6.82 & 6.84 & 6.84 \\ \text{C-6} & 6.73 & 6.26 & 6.71 & 6.75 & 6.78 & 6.69 & 3 & 7.24^{\text{b}} \\ \end{cases} 7.24^{\text{b}} \begin{cases} 7.24^{\text{b}} \\ 7.14^{\text{b}} \\ \text{dd} \end{cases} 8.0 & 2.0 \\ \text{c-3} & - & - & - & - & - & - & - & - & - & $	▲~5	3.92	3.91	3.91	3.93	3.82	3.97	3.95	3.85	ddd	9.0 6.0 2.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	▲- 6a	4.58	4.53	4.48	4.55	4.58	4.47)	4.45	dd	12.0 2.5	
C-b 7.30 7.32 7.28 7.31 7.32 7.26 7.37 7.29 d 16.0 C-2 6.82 6.84 6.94 6.82 6.84 6.84 C-6 6.73 6.26 6.715 6.75 6.78 6.69s 7.24^{b} 7.14^{b} d 2.0 C-3	▲- 6b	4.44	4.43	4.51	4.43	4.26	4.54	4.48m	4.34	dd	12.0 6.0	
C-2 6.82 6.84 6.94 6.82 6.84 6.84 C-6 6.73 6.26 6.71B 6.75 6.78 6.69s 7.24^{b} 7.14^{b} d 2.0 C-3	C-a	6.17	6.19	6.19	6.20	6.21	6.23	6.23	6.16	d	16.0	
C-6 6.73 6.26 6.71s 6.75 6.78 6.69s 7.24^{b} 7.14^{b} dd 8.0 2.0 C-3	С-Ъ	7.30	7.32	7.28	7.31	7.32	7.26	7.37	7.29	d	16.0	
C-3	C-2	6.82	6.84	6.94	6.82	6.84	6.84	1 5) .	đ	2.0	
C-5 6.70 6.21 6.71s 6.70 6.71 6.69s $6.73^{b} 6.63^{b}$ d 8.0 NOE ^C + + + + + + + FAB ^d 929 843 757 961 875 789 887 945 Vis ^e 509 509 541 541 542 539 a) ¹ H NMR spectra in CD ₃ OD containing CF ₃ COOD: (1) 5% TFA at 25°C; (2) 10% TFA at 19 ^o C; (3) 10% TFA at 20 ^o C; (4)5% TFA at 25°C; (5) 10% TFA at 27 ^o C; (6) 10% TFA at 0 ^o C; (7) 5% TFA at 23 ^o C; (10) 5% TFA at 25 ^o C b) d, J = 8.5 Hz c) NOE: -1 H-4; -1 H-6	C-6	6.73	6.26	6.71s	6.75	6.78	6.69s	7.24	7.14	dd	8.0 2.0	
NOE ^C + + + + + + + FAB ^d 929 843 757 961 875 789 887 945 V1s ^e 509 509 541 541 542 539 a) ¹ H NMR spectra in CD ₃ OD containing CF ₃ COOD: (1) 5% TFA at 25 ^o C; (2) 10% TFA at 19 ^o C; (3) 10% TFA at 20 ^o C; (4) 5% TFA at 25 ^o C; (5) 10% TFA at 27 ^o C; (6) 10% TFA at 0 ^o C; (7) 5% TFA at 23 ^o C; (10) 5% TFA at 25 ^o C b) d, J = 8.5 Hz c) NOE: $\blacktriangle -1$ H-4; $\circlearrowright -1$ H-6	C-3	-	-	-	_	-	~ .	• · ·	,			
NOE ^c + + + + + + + FAB ^d 929 843 757 961 875 789 887 945 Vis ^e 509 509 541 541 542 539 a) ¹ H NMR spectra in CD ₃ OD containing CF ₃ COOD: (1) 5% TFA at 25°C; (2) 10% TFA at 19 °C; (3) 10% TFA at 20 °C; (4) 5% TFA at 25°C; (5) 10% TFA at 27 °C; (6) 10% TFA at 0 °C; (7) 5% TFA at 23 °C; (10) 5% TFA at 25 °C b) d, J = 8.5 Hz c) NOE: \blacktriangle -1 H-4; \circlearrowright -1 H-6	C-5	6.70	6.21	6.71s	6.70	6.71	6.69s	6.73 ^b	6.63 ^D	d	8.0	
Vis ^e 509 509 541 541 542 539 a) ¹ H NMR spectra in CD ₃ OD containing CF ₃ COOD: (1) 5% TFA at 25°C; (2) 10% TFA at 19 ^o C; (3) 10% TFA at 20 ^o C; (4) 5% TFA at 25°C; (5) 10% TFA at 27 ^o C; (6) 10% TFA at 0 ^o C; (7) 5% TFA at 23 ^o C; (10) 5% TFA at 25 ^o C b) d, J = 8.5 Hz c) NOE: $\blacktriangle -1$ H-4; $\circlearrowright -1$ H-6	NOE ^C	+		+	+	+	+	נ נ	+			
a) ¹ H NMR spectra in CD ₃ OD containing CF ₃ COOD: (1) 5% TFA at 25°C; (2) 10% TFA at 19 °C; (3) 10% TFA at 20 °C; (4)5% TFA at 25°C; (5) 10% TFA at 27 °C; (6) 10% TFA at 0 °C; (7) 5% TFA at 23 °C; (10) 5% TFA at 25 °C b) d, J = 8.5 Hz c) NOE: \blacktriangle -1 H-4; \circlearrowright -1 H-6	FAB	929	843	757	961	875	789	887	945			
a) ¹ H NMR spectra in CD ₃ OD containing CF ₃ COOD: (1) 5% TFA at 25°C; (2) 10% TFA at 19 ^o C; (3) 10% TFA at 20 ^o C; (4)5% TFA at 25°C; (5) 10% TFA at 27 ^o C; (6) 10% TFA at 0 ^o C; (7) 5% TFA at 23 ^o C; (10) 5% TFA at 25 ^o C b) d, J = 8.5 Hz c) NOE: \blacktriangle -1 H-4; \circlearrowright -1 H-6	Vis ^e 509 509 541 541 542 539											
19 °C; (3) 10% TFA at 20 °C; (4) 5% TFA at 25°C; (5) 10% TFA at 27 °C; (6) 10% TFA at 0 °C; (7) 5% TFA at 23 °C; (10) 5% TFA at 25 °C b) d, J = 8.5 Hz c) NOE: $\blacktriangle -1$ H-4; $\circlearrowright -1$ H-6	,											
at 0 °C; (7) 5% TFA at 23 °C; (10) 5% TFA at 25 °C b) d, J = 8.5 Hz c) NOE: \blacktriangle -1 H-4; \circlearrowright -1 H-6	19 °C;	(3)	0% TFA	3 at 20 0	C: (4)5	ر TFA at	25°C:	₩ (5) 102	TFA a	+ 27	°C: (6) 10% TFA	
b) d, $J = 8.5 \text{ Hz}$ c) NOE: $\bigtriangleup -1$ H-4; $\boxdot -1$ H-6	at 0 ^c	C; (7)	5% TFA	at 23	C; (10)) 5% TF/	at 25	°c - ‴	41		· · · · · · · · · · · · · · · · · · ·	
d) FAB-MS spectra were measured in 1M HC1/glycerol												
e) Vis spectra in MeOH contg. 3% TFA, except 7, which in 0.1M HC1-MeOH												

Table 1. $^{1}\mathrm{H}$ NMR, FAB mass, and visible spectra of <u>Salvia</u> anthocyanins

H-4; \bullet -1 H-6) indicated the position of \blacktriangle - and \bullet -glucose attached to the pelargonidin nucleus. Since the -CH₂O- signals of \blacktriangle -glucose are deshielded about 0.5 ppm more than the corresponding signals of \bullet -glucose, the former -CH₂O- group is acylated with caffeic acid, of which double bond geometry is <u>E</u> configuration (J_{\$\alpha\$,\$\beta\$} = 16 Hz).

In ¹H NMR of monodemalonylsalvianin (2), the $-CH_2O-$ protons of \bigcirc -glucose shifted about 0.5 ppm toward lower field by comparison with the corresponding protons of 3, indicating that 2 is malonylated at 6 position of \bigcirc -glucose. In ¹H NMR of salvianin (1), the signal assigned to \bigcirc -4 appeared at 5.02 ppm, which was about 1.5 ppm lower than that of the corresponding \bigcirc -4 of 2. Thus, structure of salvianin (1) was determined to be 3-O-(6-O-<u>E</u>-caffey1-**β**-D-glucopyranosy1)-5-O-(4,6-di-O-malonyl-**β**-D-glucopyranosy1)pelargonidin.

Purple petals of <u>S.</u> <u>splendens</u> (1100 g) on extraction by the procedure similar to above gave salviadelphin (4) (25.2 mg), monodemalonylsalviadelphin (5) (20.5 mg), bisdemalonyl-salviadelphin (6) (5.8 mg) and dimalonylawobanin (10) (8.5 mg). Structure of these pigments was determined similarly from their FABMS and ¹H NMR spectra (Table 1).

Similarly, blue petals of <u>S.</u> farinacea (150 g) gave pigment A (16 mg) and B (8.4 mg) as their TFA salt. Pigment A was identified as malonylawobanin (11) by comparison of HPLC retention time and 1 H NMR spectra with those of an authentic sample.⁸⁾

Pigment B, which was named salviamalvin (7), gave a molecular ion at m/z 887 in its FABMS spectrum; 28 mass unit being larger than malonylawobanin (11), which corresponded to two methyl groups. This was verified from analysis of its ¹H NMR, in which a six-proton singlet signal (CH₃ x 2) was observed at 4.00 ppm. Complete analysis of the spectrum in comparison with that of malonylawobanin (11)⁸ concluded that the pigment is 3',5'-O-dimethylmalonylawobanin (7).

Stems of <u>S.</u> <u>farinacea</u> (1600 g) contain mostly malonylawobanin (11) (28 mg isolated yield) and a trace of salviamalvin (7).

We thank the Ministry of Education, Science and Culture for financial support.

REFERENCES

1. Willstätter, R.; Bolton, E. K. Liebigs Ann. 1917, 412, 113.

2. Karrer, P.; Widmer, R. <u>Helv. Chim. Acta</u> 1929, 12, 292.

3. Shibata, M.; Uragami, S.; Matsu-ura, K. Bot. Mag. Tokyo 1966, 79, 537.

4. Asen, S. Proc. Am. Soc. Hort. Sci. 1961, 78, 586.

- 5. Kondo, T.; Nakane, Y.; Tamura, H.; Goto, T. <u>Tetrahedron</u> Lett. 1985, <u>26</u>, 5879.
- 6. Tomas-Sarberan, F. A.; Harborne, J. B.; Self, R. Phytochem., 1987, 26, 2759.
- 7. Birkofer, L.; Kaiser, C.; Donike M.; Koch, W. Z. Naturforschg. 1985, 20b, 424.
- 8. Goto, T.; Kondo, T.; Tamura, H.; Takase, S. Tetrahedron Lett. 1983, 24, 4863.

(Received in Japan 8 September 1989)